Kernel Groups and Nontrivial Galois Module Structure of Imaginary Quadratic Fields
نویسنده
چکیده
Let K be an algebraic number field with ring of integers OK , p > 2, be a rational prime and G the cyclic group of order p. Let Λ denote the order OK [G]. Let Cl(Λ) denote the locally free class group of Λ and D(Λ) the kernel group, the subgroup of Cl(Λ) consisting of classes that become trivial upon extension of scalars to the maximal order. If p is unramified in K, then D(Λ) = T (Λ), where T (Λ) is the Swan subgroup of Cl(Λ). This yields upper and lower bonds for D(Λ). Let R(Λ) denote the subgroup of Cl(Λ) consisting of those classes realizable as rings of integers, OL, where L/K is a tame Galois extension with Galois group Gal(L/K) ∼= G. We show under the hypotheses above that T (Λ)(p−1)/2 ⊆ R(Λ) ∩ D(Λ) ⊆ T (Λ), which yields conditions for when T (Λ) = R(Λ) ∩ D(Λ) and bounds on R(Λ) ∩ D(Λ). We carry out the computation for K = Q( √−d), d > 0, d = 1 or 3. In this way we exhibit primes p for which these fields have tame Galois field extensions of degree p with nontrivial Galois module structure.
منابع مشابه
Nontrivial Galois module structure of cyclotomic fields
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملFrobenius fields for Drinfeld modules of rank 2
Let φ be a Drinfeld module of rank 2 over the field of rational functions F = Fq(T ), with EndF̄ (φ) = Fq[T ]. Let K be a fixed imaginary quadratic field over F and d a positive integer. For each prime p of good reduction for φ, let πp(φ) be a root of the characteristic polynomial of the Frobenius endomorphism of φ over the finite field Fq[T ]/p. Let Πφ(K; d) be the number of primes p of degree ...
متن کاملExplicit Construction of the Hilbert Class Fields of Imaginary Quadratic Fields with Class Numbers 7 and 11
Motivated by a constructive realization of dihedral groups of prime degree as Galois group over the field of rational numbers, we give an explicit construction of the Hilbert class fields of some imaginary quadratic fields with class numbers 7 and 11. This was done by explicitly evaluating the elliptic modular j -invariant at each representative of the ideal class of an imaginary quadratic fiel...
متن کاملNontrivial Galois Module Structure of . . .
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملA refined conjecture of Mazur-Tate type for Heegner points
In [MT1], B. Mazur and J. Tate present a “refined conjecture of Birch and Swinnerton-Dyer type” for a modular elliptic curve E. This conjecture relates congruences for certain integral homology cycles on E(C) (the modular symbols) to the arithmetic of E over Q. In this paper we formulate an analogous conjecture for E over suitable imaginary quadratic fields, in which the role of the modular sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002